
Interactive Exploration and Tracking of Ensemble Viscous Fingers
Andrew Burks∗ Cassiano Sugiyama† Timothy Luciani* Jonathan Komperda* G. Elisabeta Marai*

Electronic Visualization Lab
University of Illinois at Chicago

Figure 1: Our application supports the interactive, web-based exploration of multi-run ensemble simulations, through the use of three linked
panels: 1) a flow panel comprising two 2D slabs and a 3D flow view (left), 2) a finger panel comprising a run-tracking time chart and a viscous
finger forest (center), and 3) an ensemble panel comprising a small multiple of Kiviat diagrams (right). Linked interaction and a computational
back-bone allow users to identify fingers and track their evolution over time, and to analyze the data at multiple levels of detail: ensemble, fingers,
and particles.

ABSTRACT

We present a condensed version of our submission to the SciVis
Data Contest 2016. Our submission was a web-based tool for the
visual analysis of multi-run fluid flow simulation data. The tool en-
ables the summarization and comparison of ensemble simulation
runs. The back-end implements an algorithm for the identifica-
tion and tracking of features (viscous fingers and their properties)
in transient, fluid flow simulations. The front-end allows users to
explore 3D simulation run data using linked 3D views and verti-
cal slabs for specific timesteps, a merge-tree view linked to these
spatial representations, and Kiviat diagrams for exploring run prop-
erties. We evaluate the tool with a computational fluid dynamics
expert and report his feedback.

Index Terms: K.6.1 [Ensemble Simulation Visualization]: Com-
putational Fluid Flow—Feature Extraction and Tracking

∗e-mail: {aburks3,tlucia2,jonk,gmarai} @uic.edu
†e-mail: c.sugiyama1@gmail.com

1 INTRODUCTION

This work presents an open source, web-based tool to provide in-
teractive visualization of a Finite Pointset Method (FPM) simula-
tion that consists of a cylinder filled with water with an infinite salt
source at the top. The tool enables the analysis of the simulation
at both low and high levels of abstraction by allowing the user to
browse the data in each timestep, inspect properties of each run
over time and view summaries of entire runs.

2 METHODS

2.1 Task 1: Visualization and Browsing of Point Data

How do you achieve (near-)interactive visualization and browsing
of the point data? How do you represent points? How do you
provide the context of the simulation domain? What steps do you
take to address cluttering issues?

We represent points as OpenGL vertices in a web-based 3D
Flow View which uses a color scheme adapted from Matplotlib col-
ormaps [5].

A 3D vertical slab (2D cutting plane with depth) can be used to
carve out a subset of points for in-depth analysis to alleviate clut-
tering. Further analysis of the slab through a linked panel shows
the concentration heat map and velocity vector field of the data it
contains.



2.2 Task 2: Visualization of Viscous Fingers
Which approach do you use to identify and visually represent the
viscous fingers? Does your approach offer (near-)interactive visu-
alization? What forms of pre-processing are required before visu-
alization?

We implement a back-end module to enable finger identification
(Task 2), tracking (Task 3), and summarization (Task 3). To iden-
tify features within the data using the definition of a viscous finger
(a contiguous area of high concentration), a custom clustering algo-
rithm was run on the data.

Moving the slab onto the viscous finger allows the user to view
the concentration heatmap and velocity vector field of the slab con-
taining the finger. Selecting a particular tree node in the Finger
Forest (described below) highlights the finger in color.

2.3 Task 3: Evolution of Viscous Fingers
How do you quantify and visualize finger properties across time
within an ensemble member? How do you represent the evolution
across time of these properties? How do you allow to interactively
focus the visualization on fingers with particular properties?

The output of the clustering algorithm is fed into a custom, two-
stage feature tracking algorithm.

To assign to each cluster a unique ID and also to find the ID of
the cluster in the next timestep, several properties of each cluster
are calculated and used. The first property is an average position of
the points within the cluster, weighted by the concentration of the
points. Second, we calculate the average velocity of the points in
the cluster, also weighted by the concentration of the points.

In addition to animation, Finger evolution is captured and rep-
resented through our Finger Forest visualization (middle panel in
teaser figure). The Finger Forest view contains one horizontal,
time-aligned tree for each finger in the run, as well as a Time Chart
view of the finger count over time for each run. The trees may
merge or split according to the finger evolution over time. Each
node in a tree represents a finger at that timestep. Finally, we color
and size the nodes by the average concentration and number of the
points in the finger, respectively. We perform a tree balancing op-
eration to minimize edge-crossings.

A Time Chart can be used to select the range of timesteps which
are then graphed in the Finger Forest.

2.4 Task 4: Ensemble summarization
How do you summarize and visualize the temporal evolution of
properties of the viscous fingers across the ensemble? How do
you allow to interactively use the summary visualization to focus
on ensemble members (and possibly even individual fingers) with
particular properties?

The Time Chart of the Finger Forest shows the temporal evo-
lution of the unique viscous finger count. The Kiviat diagrams
[2] summarize other properties of each run and enable compari-
son through the shape and color of each diagram. We compute six
properties of the runs at the initial launch of the application, one of
which is a property of the run as a whole, and five more properties
for each timestep, and averaged over the duration of the run

Details on demand (pop-up box) show how each property was
computed. Through our run summarization Kiviat diagrams, these
properties can be compared between ensemble members. The user
may then look at that particular run, and, using the Finger Forest,
can examine specific fingers within an individual run at a specific
timestep.

2.5 Task 5: Tying Everything Together
How do you design the visualization interface to accommodate the
different analysis tasks? How interactive is your system? What is
the largest ensemble size that you have successfully applied your

visualization to, and what are the current barriers to moving to
larger ensembles?

Our top-level design uses a linked-view paradigm to support
multiple possible workflows through the ensemble data. The 3D
view, the two slab views, the finger forest view, the runtime chart,
and the ensemble view are tied together through brushing, linking
and filtering. A typical analysis may start by 1) selecting and load-
ing a specific run from the ensemble (top control boxes at interface
top) and then exploring the finger data for that run; by 2) browsing
the ensemble summaries (star plot view), selecting a run, and then
exploring the finger data for that run; or by 3) browsing the ensem-
ble finger count over time (time chart view), selecting a run, then
exploring the finger data for that run.

To implement this web-based application, we used the d3.js [1]
and three.js [3] Javascript libraries.

3 EVALUATION, DISCUSSION AND CONCLUSION
We developed the application using a parallel prototyping [4] ap-
proach, which included 1) exploring encodings, 2) evaluation with
a computational fluid dynamics (CFD) expert, and 3) winnowing a
variety of measures as well as encodings (including parallel coordi-
nate plots and scatterplots).

The CFD expert evaluation shows that the tool can track viscous
finger behavior over time. By analyzing Finger Forest clusters and
highlighting them in the 3D view, it is possible to identify fingers
generated by boundary conditions and observe how they merge with
existing fingers at a given timestep then disperse later on. The verti-
cal slab views proved to be visually engaging and useful to explore
finger subsets of points from the simulation. The Kiviat diagrams
allow for the summarization and comparison of simulation runs.
The Time Chart shows a specific run in the context of other runs,
captures the trend in the number of fingers in each timestep over the
course of the run, and also serves as a control allowing the user to
focus the Finger Forest on a specific time window.

In conclusion, we introduced a novel tool to visualize and ana-
lyze concentration transport ensemble simulation data. Users can
interactively explore the point cloud data, track viscous fingers and
their properties over time, and compare properties between multiple
runs within the ensemble to find similarities between multiple runs.
The concept of a web-based analysis tool which allows any user to
explore sets of data interactively may be applied to other areas of
engineering and science.

ACKNOWLEDGEMENTS

This publication is based on work supported in part by the Na-
tional Science Foundation (NSF), awards NSF CBET-1250171,
NSF DMS-1557559 and NSF IIS-0952720-CAREER. We thank
the NSF REU program for supporting Andrew, the Brazilian Scien-
tific Mobility Program for supporting Cassiano’s summer at EVL,
and the NSF Graduate Research Fellows program for supporting
Tim. We thank the SciVis 2016 contest organizers and the San
Diego Supercomputing Center for sharing their datasets. We fur-
ther thank our colleagues at EVL for their support and help.

REFERENCES

[1] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE transactions on visualization and computer graphics,
17(12):2301–2309, 2011.

[2] J. M. Chambers. Graphical methods for data analysis. 1983.
[3] B. Danchilla. Three. js framework. In Beginning WebGL for HTML5,

pages 173–203. Springer, 2012.
[4] S. P. Dow, A. Glassco, J. Kass, M. Schwarz, D. L. Schwartz, and S. R.

Klemmer. Parallel prototyping leads to better design results, more di-
vergence, and increased self-efficacy. In Design Thinking Research,
pages 127–153. Springer, 2012.

[5] Matplotlib. Matplotlib colormaps.


